Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Dichotomy in the NRT gene families of dicots and grass species.

Identifieur interne : 003313 ( Main/Exploration ); précédent : 003312; suivant : 003314

Dichotomy in the NRT gene families of dicots and grass species.

Auteurs : Darren Plett [Australie] ; John Toubia ; Trevor Garnett ; Mark Tester ; Brent N. Kaiser ; Ute Baumann

Source :

RBID : pubmed:21151904

Descripteurs français

English descriptors

Abstract

A large proportion of the nitrate (NO(3)(-)) acquired by plants from soil is actively transported via members of the NRT families of NO(3)(-) transporters. In Arabidopsis, the NRT1 family has eight functionally characterised members and predominantly comprises low-affinity transporters; the NRT2 family contains seven members which appear to be high-affinity transporters; and there are two NRT3 (NAR2) family members which are known to participate in high-affinity transport. A modified reciprocal best hit (RBH) approach was used to identify putative orthologues of the Arabidopsis NRT genes in the four fully sequenced grass genomes (maize, rice, sorghum, Brachypodium). We also included the poplar genome in our analysis to establish whether differences between Arabidopsis and the grasses may be generally applicable to monocots and dicots. Our analysis reveals fundamental differences between Arabidopsis and the grass species in the gene number and family structure of all three families of NRT transporters. All grass species possessed additional NRT1.1 orthologues and appear to lack NRT1.6/NRT1.7 orthologues. There is significant separation in the NRT2 phylogenetic tree between NRT2 genes from dicots and grass species. This indicates that determination of function of NRT2 genes in grass species will not be possible in cereals based simply on sequence homology to functionally characterised Arabidopsis NRT2 genes and that proper functional analysis will be required. Arabidopsis has a unique NRT3.2 gene which may be a fusion of the NRT3.1 and NRT3.2 genes present in all other species examined here. This work provides a framework for future analysis of NO(3)(-) transporters and NO(3)(-) transport in grass crop species.

DOI: 10.1371/journal.pone.0015289
PubMed: 21151904
PubMed Central: PMC2997785


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Dichotomy in the NRT gene families of dicots and grass species.</title>
<author>
<name sortKey="Plett, Darren" sort="Plett, Darren" uniqKey="Plett D" first="Darren" last="Plett">Darren Plett</name>
<affiliation wicri:level="1">
<nlm:affiliation>Australian Centre for Plant Functional Genomics, Waite Research Institute, University of Adelaide, Adelaide, South Australia, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Australian Centre for Plant Functional Genomics, Waite Research Institute, University of Adelaide, Adelaide, South Australia</wicri:regionArea>
<wicri:noRegion>South Australia</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Toubia, John" sort="Toubia, John" uniqKey="Toubia J" first="John" last="Toubia">John Toubia</name>
</author>
<author>
<name sortKey="Garnett, Trevor" sort="Garnett, Trevor" uniqKey="Garnett T" first="Trevor" last="Garnett">Trevor Garnett</name>
</author>
<author>
<name sortKey="Tester, Mark" sort="Tester, Mark" uniqKey="Tester M" first="Mark" last="Tester">Mark Tester</name>
</author>
<author>
<name sortKey="Kaiser, Brent N" sort="Kaiser, Brent N" uniqKey="Kaiser B" first="Brent N" last="Kaiser">Brent N. Kaiser</name>
</author>
<author>
<name sortKey="Baumann, Ute" sort="Baumann, Ute" uniqKey="Baumann U" first="Ute" last="Baumann">Ute Baumann</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="RBID">pubmed:21151904</idno>
<idno type="pmid">21151904</idno>
<idno type="doi">10.1371/journal.pone.0015289</idno>
<idno type="pmc">PMC2997785</idno>
<idno type="wicri:Area/Main/Corpus">002F80</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002F80</idno>
<idno type="wicri:Area/Main/Curation">002F80</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002F80</idno>
<idno type="wicri:Area/Main/Exploration">002F80</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Dichotomy in the NRT gene families of dicots and grass species.</title>
<author>
<name sortKey="Plett, Darren" sort="Plett, Darren" uniqKey="Plett D" first="Darren" last="Plett">Darren Plett</name>
<affiliation wicri:level="1">
<nlm:affiliation>Australian Centre for Plant Functional Genomics, Waite Research Institute, University of Adelaide, Adelaide, South Australia, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Australian Centre for Plant Functional Genomics, Waite Research Institute, University of Adelaide, Adelaide, South Australia</wicri:regionArea>
<wicri:noRegion>South Australia</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Toubia, John" sort="Toubia, John" uniqKey="Toubia J" first="John" last="Toubia">John Toubia</name>
</author>
<author>
<name sortKey="Garnett, Trevor" sort="Garnett, Trevor" uniqKey="Garnett T" first="Trevor" last="Garnett">Trevor Garnett</name>
</author>
<author>
<name sortKey="Tester, Mark" sort="Tester, Mark" uniqKey="Tester M" first="Mark" last="Tester">Mark Tester</name>
</author>
<author>
<name sortKey="Kaiser, Brent N" sort="Kaiser, Brent N" uniqKey="Kaiser B" first="Brent N" last="Kaiser">Brent N. Kaiser</name>
</author>
<author>
<name sortKey="Baumann, Ute" sort="Baumann, Ute" uniqKey="Baumann U" first="Ute" last="Baumann">Ute Baumann</name>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Arabidopsis (genetics)</term>
<term>Arabidopsis (physiology)</term>
<term>Chromosomes, Plant (ultrastructure)</term>
<term>Computational Biology (MeSH)</term>
<term>DNA, Plant (genetics)</term>
<term>Databases, Genetic (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Genes, Plant (MeSH)</term>
<term>Genome, Plant (MeSH)</term>
<term>Models, Genetic (MeSH)</term>
<term>Nitrates (chemistry)</term>
<term>Phylogeny (MeSH)</term>
<term>Plant Proteins (metabolism)</term>
<term>Sequence Analysis, DNA (MeSH)</term>
<term>Species Specificity (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ADN des plantes (génétique)</term>
<term>Analyse de séquence d'ADN (MeSH)</term>
<term>Arabidopsis (génétique)</term>
<term>Arabidopsis (physiologie)</term>
<term>Bases de données génétiques (MeSH)</term>
<term>Biologie informatique (MeSH)</term>
<term>Chromosomes de plante (ultrastructure)</term>
<term>Gènes de plante (MeSH)</term>
<term>Génome végétal (MeSH)</term>
<term>Modèles génétiques (MeSH)</term>
<term>Nitrates (composition chimique)</term>
<term>Phylogenèse (MeSH)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Spécificité d'espèce (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Nitrates</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>DNA, Plant</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Nitrates</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Arabidopsis</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ADN des plantes</term>
<term>Arabidopsis</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Arabidopsis</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Arabidopsis</term>
</keywords>
<keywords scheme="MESH" qualifier="ultrastructure" xml:lang="en">
<term>Chromosomes, Plant</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Computational Biology</term>
<term>Databases, Genetic</term>
<term>Gene Expression Regulation, Plant</term>
<term>Genes, Plant</term>
<term>Genome, Plant</term>
<term>Models, Genetic</term>
<term>Phylogeny</term>
<term>Sequence Analysis, DNA</term>
<term>Species Specificity</term>
</keywords>
<keywords scheme="MESH" qualifier="ultrastructure" xml:lang="fr">
<term>Analyse de séquence d'ADN</term>
<term>Bases de données génétiques</term>
<term>Biologie informatique</term>
<term>Chromosomes de plante</term>
<term>Gènes de plante</term>
<term>Génome végétal</term>
<term>Modèles génétiques</term>
<term>Phylogenèse</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Spécificité d'espèce</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A large proportion of the nitrate (NO(3)(-)) acquired by plants from soil is actively transported via members of the NRT families of NO(3)(-) transporters. In Arabidopsis, the NRT1 family has eight functionally characterised members and predominantly comprises low-affinity transporters; the NRT2 family contains seven members which appear to be high-affinity transporters; and there are two NRT3 (NAR2) family members which are known to participate in high-affinity transport. A modified reciprocal best hit (RBH) approach was used to identify putative orthologues of the Arabidopsis NRT genes in the four fully sequenced grass genomes (maize, rice, sorghum, Brachypodium). We also included the poplar genome in our analysis to establish whether differences between Arabidopsis and the grasses may be generally applicable to monocots and dicots. Our analysis reveals fundamental differences between Arabidopsis and the grass species in the gene number and family structure of all three families of NRT transporters. All grass species possessed additional NRT1.1 orthologues and appear to lack NRT1.6/NRT1.7 orthologues. There is significant separation in the NRT2 phylogenetic tree between NRT2 genes from dicots and grass species. This indicates that determination of function of NRT2 genes in grass species will not be possible in cereals based simply on sequence homology to functionally characterised Arabidopsis NRT2 genes and that proper functional analysis will be required. Arabidopsis has a unique NRT3.2 gene which may be a fusion of the NRT3.1 and NRT3.2 genes present in all other species examined here. This work provides a framework for future analysis of NO(3)(-) transporters and NO(3)(-) transport in grass crop species.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">21151904</PMID>
<DateCompleted>
<Year>2011</Year>
<Month>07</Month>
<Day>05</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>5</Volume>
<Issue>12</Issue>
<PubDate>
<Year>2010</Year>
<Month>Dec</Month>
<Day>06</Day>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>Dichotomy in the NRT gene families of dicots and grass species.</ArticleTitle>
<Pagination>
<MedlinePgn>e15289</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0015289</ELocationID>
<Abstract>
<AbstractText>A large proportion of the nitrate (NO(3)(-)) acquired by plants from soil is actively transported via members of the NRT families of NO(3)(-) transporters. In Arabidopsis, the NRT1 family has eight functionally characterised members and predominantly comprises low-affinity transporters; the NRT2 family contains seven members which appear to be high-affinity transporters; and there are two NRT3 (NAR2) family members which are known to participate in high-affinity transport. A modified reciprocal best hit (RBH) approach was used to identify putative orthologues of the Arabidopsis NRT genes in the four fully sequenced grass genomes (maize, rice, sorghum, Brachypodium). We also included the poplar genome in our analysis to establish whether differences between Arabidopsis and the grasses may be generally applicable to monocots and dicots. Our analysis reveals fundamental differences between Arabidopsis and the grass species in the gene number and family structure of all three families of NRT transporters. All grass species possessed additional NRT1.1 orthologues and appear to lack NRT1.6/NRT1.7 orthologues. There is significant separation in the NRT2 phylogenetic tree between NRT2 genes from dicots and grass species. This indicates that determination of function of NRT2 genes in grass species will not be possible in cereals based simply on sequence homology to functionally characterised Arabidopsis NRT2 genes and that proper functional analysis will be required. Arabidopsis has a unique NRT3.2 gene which may be a fusion of the NRT3.1 and NRT3.2 genes present in all other species examined here. This work provides a framework for future analysis of NO(3)(-) transporters and NO(3)(-) transport in grass crop species.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Plett</LastName>
<ForeName>Darren</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Australian Centre for Plant Functional Genomics, Waite Research Institute, University of Adelaide, Adelaide, South Australia, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Toubia</LastName>
<ForeName>John</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Garnett</LastName>
<ForeName>Trevor</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Tester</LastName>
<ForeName>Mark</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kaiser</LastName>
<ForeName>Brent N</ForeName>
<Initials>BN</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Baumann</LastName>
<ForeName>Ute</ForeName>
<Initials>U</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2010</Year>
<Month>12</Month>
<Day>06</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018744">DNA, Plant</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009566">Nitrates</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D017360" MajorTopicYN="N">Arabidopsis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032461" MajorTopicYN="N">Chromosomes, Plant</DescriptorName>
<QualifierName UI="Q000648" MajorTopicYN="N">ultrastructure</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019295" MajorTopicYN="N">Computational Biology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018744" MajorTopicYN="N">DNA, Plant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030541" MajorTopicYN="N">Databases, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="N">Genes, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018745" MajorTopicYN="N">Genome, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008957" MajorTopicYN="N">Models, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009566" MajorTopicYN="N">Nitrates</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017422" MajorTopicYN="N">Sequence Analysis, DNA</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013045" MajorTopicYN="N">Species Specificity</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2010</Year>
<Month>09</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2010</Year>
<Month>11</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>12</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>12</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>7</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21151904</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0015289</ArticleId>
<ArticleId IdType="pmc">PMC2997785</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mol Biol Evol. 2000 Jan;17(1):189-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10666718</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Jan;143(1):425-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17085507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2000 Mar;122(3):783-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10712542</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2000 Sep 8;302(1):205-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10964570</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Evol. 2001 Jun;52(6):540-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11443357</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2002 Apr 5;296(5565):79-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11935017</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2002 Apr 5;296(5565):92-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11935018</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 Jun;129(2):886-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12068127</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2003 Mar 3;22(5):1005-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12606566</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2003 Mar;44(3):304-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12668777</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Biol. 2003;10(6):997-1010</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14980022</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2004 Sep;45(9):1139-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15509836</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1996 Oct 10;175(1-2):223-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8917103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1997 Sep 1;25(17):3389-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9254694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1997 Oct 24;278(5338):631-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9381173</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1998 Nov 6;283(4):707-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9790834</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Dec 8;95(25):15134-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9844028</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1999 May;11(5):865-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10330471</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1999 Aug;11(8):1381-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10449574</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2005 Feb;41(3):442-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15659102</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Aug 11;436(7052):793-800</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16100779</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS J. 2005 Oct;272(20):5101-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16218944</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Mar;140(3):1036-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16415212</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2007;2(4):e383</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17440619</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2007;8:120</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17425803</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2007 May 25;581(12):2290-300</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17481610</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 Nov 20;326(5956):1112-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19965430</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2010 Feb 11;463(7282):763-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20148030</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2010 May;22(5):1633-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20501909</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 May;19(5):1590-602</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17540716</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Aug 10;282(32):23541-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17573350</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Sep;20(9):2514-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18780802</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Dec;20(12):3289-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19050168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Jan 29;457(7229):551-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19189423</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2009;537:39-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19378139</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2009;60(7):1939-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19395389</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2009 Sep 18;138(6):1184-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19766570</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2009 Sep;21(9):2750-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19734434</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Nov;142(3):1304-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17012411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2000 Feb;122(2):379-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10677431</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Australie</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Baumann, Ute" sort="Baumann, Ute" uniqKey="Baumann U" first="Ute" last="Baumann">Ute Baumann</name>
<name sortKey="Garnett, Trevor" sort="Garnett, Trevor" uniqKey="Garnett T" first="Trevor" last="Garnett">Trevor Garnett</name>
<name sortKey="Kaiser, Brent N" sort="Kaiser, Brent N" uniqKey="Kaiser B" first="Brent N" last="Kaiser">Brent N. Kaiser</name>
<name sortKey="Tester, Mark" sort="Tester, Mark" uniqKey="Tester M" first="Mark" last="Tester">Mark Tester</name>
<name sortKey="Toubia, John" sort="Toubia, John" uniqKey="Toubia J" first="John" last="Toubia">John Toubia</name>
</noCountry>
<country name="Australie">
<noRegion>
<name sortKey="Plett, Darren" sort="Plett, Darren" uniqKey="Plett D" first="Darren" last="Plett">Darren Plett</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003313 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003313 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:21151904
   |texte=   Dichotomy in the NRT gene families of dicots and grass species.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:21151904" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020